

Structures & Objectives

Structures:

- Introduction of the European inland navigation & shipping sectors
- Review on the typical design of inland vessels & tankers
- Review on green ship technology
- Preference for future marine fuel
- Review on dual-fuel technology
- ARGONON
- Veth Hybrid Drive
- New design (proposed)

Objectives:

- To define the preferable engine system for inland vessels
- To define more efficient propulsion system for inland vessels
- To propose new design for inland tankers

- 20.000 vessels
- 38.000 km navigable inland waterways

- Eurostat 2011: Combined EU transport modes
 - 6.6% INLAND (with 14.6% railway and 78.8% road)

Subdivision: Western European and Eastern European areas

- Eastern European Area
 - Along the Danube
- Focus: WESTERN EUROPEAN AREA
 - Along the Rhine

Main Characteristics of European Inland Navigation Sector

Western European Area

- Along the Rhine, its canals and tributaries
 - between Rotterdam Basel
- In 2007:
 - No of vessels EAST: 2726
 - No of vessels WEST: 11445
- Vibrant growth of new building vessels (Germany and the Netherlands)

Main Characteristics of European Inland Navigation Sector

Western European Inland Shipping Sector

- Crucial for trading in North-West (NW) Europe due to:
 - Full road capacity
 - Slow growth of road transportation mode

– Vibrant growth induced by:

- Full road capacity
- Capacious advantage of inland navigation

Universität Rostock

Traditio et Innovatio

► The capacious advantage leads to next economical benefits:

- Time savings
- Reduction of traffic congestion
- Reduction of environmental emissions
- Ensuring "time delivery" of goods

Main Characteristics of European Inland Shipping Sector

Dominated by ship owners with single ship

 In the Netherlands: 87% of inland shipping company belongs to ship owners with single ship

Small companies:

- Minimal research budgets
- Limited technical knowledge

Low technical innovation comparing to sea shipping sector due to:

- Limited technical knowledge
- Limited size of the inland shipping company (limited budgets and risk)

Typical design of inland vessels Mainly defined by the size of the waterways Limitation on the Rhine:

Location	Max L (m)	Max B (m)	Hmax (m)
Along the Rhine	140	22.90	9.10
Rhine canals & tributaries	100	11.50	4.30

According to ADN and ADNR:

- Type G: inland gas tanker
- Type C: inland chemical tanker
- Type N: inland oil tanker

Classification (PIANC waterway class)

Class	L (m)	B (m)	Hmax (m)	T (m)	Cargo (t)
IV	80 – 87	9.50 – 11.50	3.00 - 6.50	2.80 - 4.50	1000 – 1500
Va	100 – 110	11 –	3.00 - 6.00	2.80 - 5.80	1500 - 3000
		16.20			

Mostly are Type C and Type N tankers of waterway class Va

10

Chemical tanker waterway class IV:

- Engine system: 4-stroke medium speed marine diesel engine with average engine power 1000 kW
- Propulsion system: diesel-electric
- Aft-peak part length = 18 m compose 21% of total length
- Navigate along the Rhine on its canals and tributaries

TOP VIEW

Rostock

Traditio et Innovatio

Traditio et Innovatio

- Chemical tanker waterway class Va:
 - Engine system: 4-stroke medium speed marine diesel engine with average engine power 1350 kW
 - Propulsion system: diesel-electric
 - Aft-peak part length = 18 m compose 16% of total length
 - Navigate along the Rhine only

► Main aspects:

- Reduction of the consumption of materials, energy and the environmental emission
- Recycle & reuse the materials

Green propulsion technology:

- Dual-fuel engines
- LNG-fuelled engines
- Innovative propulsion system

Reduces harmful environmental emissions during vessel's operation along the inland waterways

Improves economical and social benefits

- Reduction of fuel consumption in inland waterway vessels gives economical benefits for ship owners
- Clear environment for huge number of population which lives close to inland waterways

Green Fuel for the Future – LNG

No.	Characteristics	MDO engine	LNG engine	Dual-fuel engine
1	Thermal efficiency	38%	50%	Gas mode: 47%
				Diesel mode: 38%
2	CO ₂ emission	NO	25 – 30%	Gas mode: 30%
	reduction			Diesel mode: NO
3	NO _x emission	NO	85%	Gas mode: 85%
	reduction			Diesel mode: NO
4	SO _x emission	NO	100%	Gas mode: 100%
	reduction			Diesel mode: NO
5	Particles emission	NO	100%	Gas mode: 100%
	reduction			Diesel mode: NO
6	Fuel flexibility	NO	NO	YES

Preference: dual-fuel engine technology with its fuel flexibility

Dual-fuel engine technology

• Characteristics:

- Dual-fuel diesel engines can be run in either gas mode or diesel mode
- Fuel flexibility:

Gas mode

- Natural gas + MDO pilot
- Automatic and instant trip to diesel operation in alarm/emergency situation
- Transfer to diesel operation at any load on request

Diesel mode

- MDO/HFO/CRUDE + MDO pilot
- Operated as an ordinary diesel engine
- Transfer to gas operation at any load below 80%
- Pilot fuel injection in operation also during diesel mode operation

Transfer between modes without power interruption

Engine Load

Dual-fuel engine technology

Scheme

Europe's First LNG-fuelled Inland Vessel – "ARGONON"

TOP VIEW

► Main specifications of "ARGONON"

No.	Parameters	Specifications		
1	Ship type	Type C inland waterway tanker		
2	Hull	Double-hull, Y-shape		
3	Length (m)	110		
4	Breadth (m)	16.40		
5	Height (m)	6.20		
6	Draft (m)	4.95		
7	Deadweight (t)	6100		
8	Displacement (t)	7600		
9	LNG tank	40 m ³ Type C tank (IMO IGC-code)		
10	Cargo volume	6400 m ³		
11	Main engine	2 x Caterpillar 3512DF dual-fuel engines		
12	Propulsion system	Diesel electric with single propeller + nozzle on tunnel		
13	Operation range	1600 km without refuelling along the Rhine (between Rotterdam and Basel)		

Innovative Propulsion System – Veth Hybrid Drive

EMship

- Project "Semper Fi"
- Characteristics:
 - Higher propulsive efficiency
 - Greater manoevrability
 - More power can be transmitted with smaller propeller
 - Compact propulsion system
 - More layout flexibility for ship designers
 - Low noise and vibration characteristics

Future design (proposed)

Future design (proposed)

Combination - WHY?

- Veth Hybrid Drive:
 - COMPACT
 - Higher propulsive efficiency
 - Greater manoeuvrability
- Diesel-electric propulsion system:
 - Layout flexibility
 - Low noise and vibration levels
- Dual-fuel engine technology:
 - Low environmental emissions
 - Fuel flexibility

Dimensional comparison

No.	Parameters	"ARGONON"	"STAVORDIA"	"Semper Fi"	"Future design"
1	Ship type	Type C tanker class Va	Type C tanker class IV	Inland container vessel	Type C tanker class IV
2	Aft-peak length (m)	18	18	18	18
3	Length (m)	110	86	110	86
4	Breadth (m)	16.40	11.40	11.40	11.40
5	Height (m)	6.20	4.75	-	4.75
6	Draft (m)	4.95	3.20	3.70	3.20
7	Deadweight (t)	6100	1800	3160	1800
8	Displacement (t)	7600	2250	3950	2250
9	LNG tank	40 m ³ Type C tank (IMO IGC-code)	NO	NO	40 m ³ Type C tank (IMO IGC-code)
10	Cargo volume (m ³)	6400	2280	3450	2280
11	Total engine power (kW)	2 x 1115 = 2230	1104	2 x 330 = 660	1056
12	Propulsion system	Diesel electric single propeller on tunnel	Fixed-pitch propeller on tunnel	Diesel-electric with 2 x Veth Hybrid Drive	Diesel-electric with 1 x Veth Hybrid Drive

Future design: possible to realize

University of Rostock | Naval Architecture and Ocean Engineering

SUMMARY

- The growth of inland shipping sector in recent years is induced by its capacious advantage and economical benefits
- The design of inland vessels is strongly defined and classified according to the waterways restrictions
- The preference fuel of the future in inland navigation is LNG through dual-fuel technology
- December 2011: tanker "ARGONON" first dual-fuel vessel on the Rhine
- Proposed future design: the combination of 3 technical innovation is a feasible way to improve technical and operational performance
- New design: giving reason for the ship owner to incorporate new innovation into its fleet

Thank you for your attention!

University of Rostock | Naval Architecture and Ocean Engineering