MASTER THESIS PRESENTATION

NUMERICAL SIMULATION OF THE 3D FLOW AROUND JUNCTURES
by: VŨ MINH TU N
Supervisor: Adrian Lungu

$=$ Outline
> 1) Introduction
> 2) The studied problem
> 3) Choosing the best grid and turbulence model
$>4)$ The solution of steady simulation
>5) The solution of unsteady simulation
>6) Conclusion and future work

- Introduction
- Junction flow is characterized by the horseshoe vortex and the boundary layer separation caused by the adverse pressure gradient. The circular cylinder mounted on the plate is the most popular representative juncture
- Many studies have been conducted for recent decades, but, there is no established method to understand the 3D flow around the cylinder mounted on the curved plate.
- Primary objective: The 3D flow around the inclinded cylinder mounted the flat and curved plate at $\operatorname{Re}=3,900$ and $\operatorname{Re}=10^{6}$.

= The studied problem

- The radius of cylinder is 0.1 m
- The depth of cylinder is 1 m .
- The plate is either flat or curved (convex or concave)
- The three different curvature radii of the plate: 30D, 40D, 50D, where D is the diameter of cylinder.
- The cylinder is inclined at every 10 degrees, from 0° to 30° laterally, downstream and upstream
140 configurations to cover all the combinations

NUMERICAL SIMULATION OF THE 3D FLOW AROUND JUNCTURES
$=$ Choosing the best grid and turbulence model
The drag coefficient of an upright circular cylinder at Re=106

Messt	Twoulence models	$C_{\text {d }}$ in Simulation	C_{d} in Experinent [75]	EnOI (\%)
Grid 1	S-A	0.3759	0.4	6.025
	K-cpsilon RNG	0.35183991		12.04002
	k-epsilon Realizable	0.34843775		12.89056
	k-mmega SS'l'	0.45771024		14.42756
Gid 2	S-A	0.48268798		20.672
	K-cpsilon RNG	0.41781923		4.454807
	k-cpsilon Realizable	0.36106899		9.732753
	k-omega SST	0.55113265		37.78316
Grid 3	S-A	0.39060602		2.348495
	k-epsilon RNG	0.35814181		10.3888
	k-epsilon Realizable	0.36169221		8.826918
	k-omega SST	0.46612037		16.53009

The S-A model is the most suitable turbulent model and the Grid 3 is the best mesh which will be used to simulate the next complex cases.
-The solution of steady simulation

- The upright cylinder mounted on the flat plate:

=The solution of steady simulation

Flow topology around the cylinder in front of cylinder

Flow topology around the cylinder in the rear side of cylinder
Re=3,900
$R e=10^{6}$

NUMERICAL SIMULATION OF THE 3D FLOW AROUND JUNCTURES

NUMERICAL SIMULATION OF THE 3D FLOW AROUND JUNCTURES
$=$ The solution of steady simulation
The inclined cylinder mounted on the curved plate:

> The circular cylinder is inclined laterally with an angle of 30° and mounted on the convex plate that has the curvature radius of 50D.
> $\mathrm{Re}=3,900$
> The turbulence model: Spalart-Allmaras model
$>$ Computational time: time step of 0.005 s, number of time steps of 50,000 , residuum of 10^{-6}

- Conclusion
\square The direction of cylinder inclination affects the juncture flow. The stronger pressure gradients reveals at the root of the cylinder inclined longitudinally towards to upstream.
\square The smaller curvatures determine the larger pressure. This leads to an increase of the total drag coefficient.
\square At $\mathrm{Re}=3,900$, the total drag coefficients decrease when the inclination angle of cylinder increases, regardless the direction of the cylinder inclination as well as the plate curvature.
\square At $\operatorname{Re}=10^{6}$, the total drag coefficient mostly increases along with the increase of cylinder inclination angle in upstream and downstream cases, except for the case of 10° angle in downstream for all convex and concave cases.

= Future work

\square Carrying out the experiments with the circular cylinder mounted on the curved plate.
\square The simulation of free surface.

