

Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction

Romain Baudson

Supervisor: Prof. Dario Boote (UNIGE)

External Reviewer: Prof. Pierre Ferrant (Ecole Centrale de Nantes)

Gdynia, 18th of February 2013

Contents

Introduction

- □ Star-CCM+ & Physical models
- Resistance prediction study
- Propeller performances study
- Conclusions

Introduction

- Resistance of Sailing Boats
 - **Typical Decomposition:** $R_{Tot} = R_{Up} + R_{Side} + R_{Heel}$
 - Present case: <u>Motoring conditions</u>
 - $R_{Tot} = R_{Up} = R_{Wave} + R_{Viscous Pressure} + R_{friction}$

Study of Resistance

- Effective <u>Power prediction</u>
 - $P_e = R_t x V_s$ with R_t the resistance in calm water without propulsive equipment and V_s the ship velocity
- Linked to the <u>Propulsion analysis</u>
 - $P_e = \eta x P_B$

Optimization Loop

- P_B = Brake power (Engine characteristics)
- Hull <u>shape design</u>
 - $L_{\rm WL}/B_{\rm WL}$, $B_{\rm WL}/T$, Cp , LCB , $L_{\rm WL}/\nabla^{1/3}$

Introduction

- Propeller Performances
 - Common <u>power</u> used: $P_T = T \times V_A$
 - T = Thrust, measured in propulsion tests usually $> R_T$
 - $t = 1 R_T / T$
 - □ <u>Wake</u>: inflow of the Propeller
 - Influenced by: fluid properties and waves
 - $W = 1 V_A / V_S$
 - □ <u>Hull</u> efficiency
 - $\eta_{\rm H} = P_{\rm E}/P_{\rm T} = (1-t)/(1-w)$

Introduction

Propeller Performances

- Present case: Study of the shaft line and brackets impact
- Wake generation

- Computational Fluids Dynamics software
 - □ Use of the NS equations and as fluid/air considered here Newtonian fluid model

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla . \left(\rho v \right) &= 0\\ \frac{\partial}{\partial t} \left(\rho v \right) + \nabla . \left(\rho v v \right) &= -\nabla p + \nabla . \left(\overline{\tau} \right)\\ \overline{\tau} &= \mu \left[\left(\nabla v + \nabla v^T \right) - \frac{2}{3} \nabla . v I \right] \end{aligned}$$

- RANS Closure Models
 - Requires closure governing equations
 - Model type: Eddy-Viscosity model
 - Most used for this type of study:
 - k-epsilon realizable all y+
 - k-omega SST

18/02/13

Star-CCM+ & Physical models

Additional Features:

- Free surface solving: Volume Of Fluids model
 - Volume control contains interface of fluids
 - New set of equations balanced by volume fraction solved

Body forces

- □ Used to compute the resistance and assess convergence
- Decomposed into Pressure, Shear and Gravity forces
- DFBI feature
 - Computes fluids/structures interactions using structure inertia and fluids forces
 - Used for heave and pitch determination

Studied Hull

- <u>70 m</u> sailing boat from Perini Navi
- <u>Retractable keel</u> for motoring sailing
- Dimensions

Table	1 –	- Hull	Dim	ensions
14010	-	11011		

Characteristic	Symbol	Value
Length Overall	LOA	$70 \ [m]$
Length at DWL	LDWL	$62.669 \ [m]$
Length between Perpendicular	LBP	60.789~[m]
Maximum Breadth	Bmax	$13.238 \ [m]$
Draft	TDWL	$4.54 \ [m]$
Freeboard at Midship	amidFB	$2.360 \ [m]$
Displacement at DWL	Δ	927 [t]

Fig.2 - 70m Perini Navi Boat

S/Y 70m PERINI NAVI DESIGN

- CAD model for CFD computations
 - Built from rendering file using Rhinoceros software (real scale)
 - Takes into account only the hull and its appendices

- Domain of simulation
 - Build with CAD features of Star-CCM+
 - Common dimensions used for length, breadth and depth
 - Symmetry along x-axis used (symmetry plane)

Fig.4 – Domain of simulation (resistance study)

STAR-CCM+

- Mesh generation
 - Hull divided into several parts for better mesh generation
 - Free surface refinements
 - Depth
 - Along predicted wave pattern

HullWaterPhase SideRudder FrontRudder FrontRudderFrontR

HullAirPhase

Fig.6 – Hull mesh

- Mesh generation
 - Prism layer mesh
 - layer thickness computed by formulas
 - 12 cells used
 - Same mesh for all the studies except for the prism layer
- Simulations
 - Performed on an Intel Core i7 3770K 3,4 GHz (4 cores) with 16 Gb RAM
 - Choice of speeds
 - Minimum and Maximum speeds: dictated by the company
 - □ Interval speeds: according simulations time and available time
 - Model: Implicit unsteady
 - □ Important <u>assumption</u>: heave and pitch only considered for maximum speed

- Results
 - Resistance vs. Speed Curve
 - Validity of the results ?
 - Comparison with Wolfson VPP method (architect office)
 - Comparison with Guerritsma formulas

	Perini Hull	Guerritsma's study ranges
L_{WL}/B_{WL}	5.12	2.76 - 5.00
B_{WL}/T_{hull}	4.53	2.46 - 19.32
$L_{WL}/\nabla^{1/3}$	6.57	4.34 - 8.50
L_{CB}	-6.49	0.06%
C_p	0.54	0.52 - 0.60

18/02/13

Fig. 9 – Guerritsma parent hull an Perini Navi hull

 \Rightarrow Same Range \checkmark

Results

Example of results obtained (Wave field and pattern).

Fig. 11 – Wave field (18.3 knots)

Fig. 12 – Wave pattern along the hull (18.3 knots)

- Problematic
 - Qualitative study of the shaft line and brackets impact on the propeller inflow
- Geometry
 - Build using company plans and CAD software Rhinoceros (real scale)

- Domain of simulation
 - Built using Rhinoceros
 - Use of the double hull assumption: top ends at free surface level (symmetry plane)
- Mesh generation
 - Hull and Shaft line divided into different parts
 - Volume shapes for local refinements

Fig. 17 – Volume shapes

18/02/13

Fig. 15 – Domain of simulation (propeller performances study)

Fig. 16 – Shaft line parts

- Mesh generation
 - Prism layer mesh
 - layer thickness computed by formulas
 - 20 cells used

Fig. 18 – Mesh refinement and prism layer

- Simulation
 - Performed on 8 cores 2.4GHz with 32Gb RAM
 - At maximum speed
 - □ Model: Steady
 - First part of the simulation in <u>laminar</u> (to have good initial solution for turbulent simulation
 - Then k-epsilon Realizable

- Results
 - Analysis on 14 plans (6 vertical & 8 horizontal)
 - Vertical planes: shaft influence propagation

Fig. 19 – Shaft line wake steps

Results

Horizontal planes: brackets influence

Fig. 20 – Brackets influence

Results

- Propositions mainly on the brackets design/configuration
 - Orientation of the brackets
 - Trailing edge form: curved in order to reduce turbulences and so vibrations
 - Bracket distance

Company choice: <u>Bracket orientation</u>

EMshi Advanced Design

Fig. 22 – Bracket configuration proposition

Conclusions

Resistance study

- Good agreement with statistical method results
- Helps for exhaust gas pipe location
- Propeller performances
 - Better understanding of the wake creation
 - Analysis of the geometry design
 - Modification to improve the performances

Erasmus Master Course in Advanced Ship Design

Thank you for your attention

