

Fatigue and Fracture Assessment of Butt Welded Joints and Thermal Cut Edges under Axial and Bending Loads

J. D. Benther

Supervisor: Prof. P. Kaeding (URO) Internship Tutor: Dr. H. von Selle (DNV GL Hamburg)

Istanbul, February 2016

Fatigue and Fracture Assessment of Butt Welded Joints and Thermal Cut Edges under Axial and Bending Loads

- Contents:
 - 1. Motivation
 - 2. Butt Welded Joints with Internal Defect
 - 3. Thermal Cut Edges
 - 4. Conclusion

MOTIVATION

Evolution of Container Vessels

Jorge Duarte Benther, Emship 5th Cohort (2014-2016)3Defense of Master Thesis, Rostock, February 2016

Internal Flaw and Model Shape/Dimensions

Source: Fraunhofer IWM Verb Software

4

Source: DNV GL (2015): "Fatigue Characterization of YP47 Welds", DNV GL Internal Report

Basic and Parameters Formulation

Table of Parameters Adopted for Simulation

Reference	С (-)	ΔK_{th} (MPa.m ^{1/2})	$\frac{K_c}{(\text{MPa.m}^{1/2})}$	n (-)
IIW 2008	1.65 · 10 ⁻⁸	5.40	1000	3.00
Series A	4.78 · 10 ⁻⁹	8.22	1000	3.00

Doerk, O.; Shin, S.-B.; and An, G.-B. (2014): "Design Impact of Fracture Mechanics Properties of High Toughness YP47 Welds", ISOPE (Busan)

> Stress Ratio •R = 0Stress Range (constant) • $\Delta \sigma = 150$ N/mm²

6

Comparison with Literature (*Maddox*)

Reference	Fatigue Strength Enhancement Factor, kb	$k = 1 + \begin{bmatrix} 0.7 \\ 0.5 \\ 10 \end{bmatrix} \begin{bmatrix} L \\ 0 \end{bmatrix}$
BS7608:1993	1.27	$k_b = 1 + \frac{1}{t^{0.2}} + 0.5 \cdot \log \frac{1}{t}$
Maddox Exp.	1.20	(1 1)
Maddox Eq.	1.18	$(25)^n$ $($
FM kb from Simulation	1.47	$ k_{tb} = \left(\frac{25}{t_{eff}}\right) \cdot \left[1 + 0.18\Omega^{1.4}\right] $

Source: Maddox, S. J. (2015): "Allowance for bending in fatigue design rules for welded joints", IIW XIII-2580-15

Thermal Cut Edge Scantling/Treatments

Selle, H. von (2014): "Recent Fatigue and Fracture Research Activities", DNV GL - Brochure

Stress Concentration Factor Results for Axial

Jorge Duarte Benther, Emship 5th Cohort (2014-2016)

Defense of Master Thesis, Rostock, February 2016

Jorge Duarte Benther, Emship 5th Cohort (2014-2016)

Defense of Master Thesis, Rostock, February 2016

Parameters of Fracture Mechanics Analysis of TCE

- Stress ratio R = 0.1;
- Stress range $\Delta \sigma$ of 252MPa, 270MPa, 306MPa, 360MPa and 423MPa;
- FKM Guidelines parameters for base materials (YP36, YP40 and YP47);
- Crack models: Quarter and Semi-elliptical;
- Thickness of 25, 50 and 80mm; and
- Initial crack size of $a_0 = 1.1$ mm and $a_0/c_0 = 1$.

Material	С (-)	ΔK_{th} (MPa.m ^{1/2})	<i>Kc</i> (MPa.m ^{1/2})	т (-)
YP36	5.96 · 10 ⁻⁹	8.20	1000	2.88
YP40	3.15 · 10 ⁻⁹	10.40	1000	3.07
YP47	5.67 · 10 ⁻⁸	8.30	1000	2.26

Berger, C. et al (2009): "FKM-Guideline Fracture Mechanics Proof of Strength", VDMA Verlag GmbH

Source: Fraunhofer IWM Verb Software

Results for Fracture Mechanics Analysis of TCE

Quarter Corner Crack under Axial

Results for Fracture Mechanics Analysis of TCE

Quarter Corner Crack under Bending

14

Comparison Results of Fracture Mechanics Analysis TCE

Jorge Duarte Benther, Emship 5th Cohort (2014-2016)

Comparison Results of Fracture Mechanics Analysis TCE

Semi-Elliptical Crack

Parameters for Variable Loads Fracture Mechanics Analysis

- Calculation according to GL Rules;
- Plate from amidship; YP40; t = 80mm; FAT125;
- R = -0.4; $\Delta \sigma = 552$ N/mm²; $\sigma_{max} = 392$ N/mm² and $\sigma_{min} = -160$ N/mm²

Results for Variable Loads Fracture Mechanics Analysis

18

CONCLUSION

- Fracture mechanics can successfully estimate lifetime;
- Lifetime will be affected by crack size, shape and parameters.
- Fatigue enhancement due to bending;