

Numerical Prediction of the Static Hydrodynamic Derivatives using CFD Techniques

Master Thesis

presented in partial fulfillment of the requirements for the double degree: "Advanced Master in Naval Architecture" conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion" conferred by Ecole Centrale de Nantes

developed at "Dunarea de Jos" University of Galati

<u>Presented by:</u> BENZOHRA Abdelmalek

developed at "Dunarea de Jos" University of Galati

<u>Supervisor:</u> <u>Prof. Dan Obreja, "Dunarea de Jos" University of Galati</u> <u>Lecturer P.hD Oana Marcu, "Dunarea de Jos" University of Galati</u>

Rostock, February 2017

Contents

- > INTRODUCTION
- PRELIMINARY HYDRODYNAMICS PERFORMANCES (USING PHP SOFTWARE PLATFORM)
 - Resistance
 - Powering
 - Rudder hydrodynamics
 - Manoeuvring performance
- CFD BASED HYDRODYNAMICS PERFORMANCE
 - Ship Resistance
 - Static PMM Tests
- Simulation of the turning circle and Zig-Zag maneuver
 - Hydrodynamic derivatives
 - Turning circle and Zig-Zag maneuvers

Structure and goals

- PHP software platform (ship resistance, powering and manoeuvring performances) of the KVLCC2 ship, in the initial design stage.
- Computational Fluid Dynamic (CFD) techniques :
 - Estimate of ship resistance for bare hull;
 - Calculate the hydrodynamic forces and moment acting on the KVLCC2 hull model in horizontal plan, with the influences of the drift and rudder deflection angles;
- Estimation of the ship trajectories during the turning circle and of Zig-Zag maneuvre
 - Calculate of the static hydrodynamics derivatives
 - Simulate the ship trajectories during the turning circle and Zig-Zag maneuvre

INTRODUCTION

✓ What is maneuverability;
✓ What are the related problem;
✓ How to solve maneuverability problems.

➢Benchmark

KVLCC2 ship hull

Hull Characteristics	Full scale	model (1/58 scale)
L _{PP} [m]	320,0	5,52
L _{WL} [m]	325,5	5,61
B [m]	58	1
D [m]	30	0,52
T [m]	20,8	0,36
C _B	0,8098	0,8098

Dimension Valu		
propeller		
<i>D</i> [m]	9.86	
$P/D_{0.7R}$ [m]	0.721	
A_{E}/A_{0} [m]	0.431	
rudder		
$S_R [m^2]$	273.3	
Projected area [m ²]	136.7	

➢Benchmark

KVLCC2 3D hull model

Main particulars	NAPA	Benchmark	Error
Volumetric displacement (m3)	312936,8	312622,0	-0,10%
Wetted surface –without-rudder (m2)	27302,0	27194,0	-0,40%
Block coefficient	0,8085	0,8098	0,16%
Midship section coefficient	0,9980	0,9980	0,00%
LCB (%)	3,442	3,480	1,09%

PRELIMINARY HYDRODYNAMICS PERFORMANCES (USING PHP SOFTWARE PLATFORM)

- ➢Resistance;
- ≻Powering;
- Rudder hydrodynamics;
- ➤Manoeuvring performance.

➢Resistance

Holtrop-Mennen method restrictions regarding KVLCC2

	Froude	C	'n	L _w	L/B	B	/T
Ship Type	number limitation	Min	Max	Min	Max	Min	Max
Tanker and bulk carriers	Fn<=0,24	0,73	0,85	5,10	7,10	2,40	3,20
Container ships and destroyers	Fn<=0,45	0,55	0,67	6,00	9,50	3,00	4,00
Trawlers, coastal ships and tugs	Fn<=0,38	0,55	0,65	3,90	6,30	2,10	3,00
KVLCC2	0,142	0,	81	5,	61	2,	79

➢ Resistance

 $R_{T} = R_{T} (1 + M_{D})$

Regression method [kW]	PHP prediction [kW]	Error
P _B =29581,50	P _B =30058,74	1,59%

PHP rudder hydrodynamics Method used

- Y.I. Voitkounsky (1985)
- ✓ Ahead and astern ship motions;
- ✓ Rudder hydrodynamic forces and moments;
- ✓ Optimum position of the rudder stock;
- ✓ Maximum value of the torque against the rudder;
- ✓ Preliminary checking of the rudder cavitation.

>PHP rudder hydrodynamics

>PHP Rudder hydrodynamics

Ahead motion results	-
Optimal distance from the rudder stock to the leading edge(d0)	2,553 [m]
Optimal hydrodynamic torque to the rudder stock(MrOpt)	4546,542 [kNm]

Astern motion results		
Distance from the rudder stock to the trailing edge of the rudder (df):	-6,097	[m]
Optimal hydrodynamic torque to the rudder stock in astern motion (MrbOpt):	1952,515	[kNm]

>PHP rudder hydrodynamics

Name	Notation	Ahead	Astern	Unity
Rudder force	C _R	3979,69	723,58	[N]
Rudder torque	M _{TR}	4495,01	1605,59	[kN.m]

Name	Ahead	Astern	Unity
Optimal hydrodynamic torque (PHP software platform)	4546,542	1952,515	[kN.m]
Torque calculations (Bureau Veritas)	4495,01	1605,59	[kN.m]
Error	1,13%	17,77%	

Maximum hydrodynamic torque	4546,542	kNm
Supplementary torque due to the friction	909,308	kNm
Total torque	5455,85	kNm

PHP Rudder hydrodynamicsPHP Rudder cavitation

alfa[deg]	pSt [kPa]	pDyn [kPa]	pTot [kPa]
11	221.3	-56,1	165,2 > 0
18	221.3	-104,4	116,9 > 0
22	221.3	-142,9	78,4 > 0

Manoeuvring performance

Abkowitz mathematical model
 Simplified equations in horizontal plane

$$X = m \left(\frac{\partial u}{\partial t} - rv - r^2 x_G \right)$$
$$Y = m \left(\frac{\partial v}{\partial t} + ru + \frac{dr}{dt} x_G \right)$$
$$N = \frac{\partial r}{\partial t} I_{zz} + m x_G \left(\frac{\partial v}{\partial t} + ru \right)$$

Linear mathematical model (Taylor expansion)

$$X_{e} + X_{u}u + X_{\dot{u}}\dot{u} = m\dot{u}$$

$$Y_{e} + Y_{v}v + Y_{r}r + Y_{\dot{v}}\dot{v} + Y_{\dot{r}}\dot{r} = m(\dot{v} + rU + \dot{r}x_{G})$$

$$N_{e} + N_{v}v + N_{r}r + N_{\dot{v}}\dot{v} + N_{\dot{r}}\dot{r} = I_{zz}\dot{r} + mx_{G}(\dot{v} + rU)$$

Manoeuvring performance

- ✓Linear mathematical model
- ✓Results

•stability parameter C was obtained and presented

C 1.953E-4

• $C > 0 \rightarrow$ Ship stable on route "

The steady turning diameter value (STD = 2623.3 m) for rudder deflection angle delta = 35 deg.

STD / L	8.059	
---------	-------	--

Yv'	-0.024232
Yvpoint'	-0.015313
Yr'	0.004247
Yrpoint'	-0.001202
Nv'	-0.008382
Nvpoint'	-0.001048
Nr'	-0.003322
Nrpoint'	-0.000799

YdeltaPrime	0.003871
NdeltaPrime	-0.001935

Static derivatives: on the basis of Clarck

➤Manoeuvring performance

✓Linear evaluation of tuning ability on the basis of Lyster and Knights relations

statistical relations by Lyster and Knights and presented in the following table.

STD / L	2.837	STD	923.428 [m]
TD / L	3.458	TD	1125.493 [m]
AD / L	3.125	AD	1017.046 [m]
TR / L	1.653	TR	538.212 [m]
Vt / Va	0.405	Vt	6.276 [knots]

STD	Steady turning diameter	
TD / L	Tactical diameter	
AD / L	Advance	
TR / L	Transfer	
Vt / Va	Speed losses ration	

CFD BASED HYDRODYNAMICS PERFORMANCE

General overview

Two configurations were studied:

- Bare hull for ship resistance potential and viscous flow computation;
- Equipped hull, a hull with rudder and propeller for static PMM tests viscous flow computation.

>Mathematical model

- ✓ Potential flow:
- the flow solution is based on Laplace equation;
- the boundary condition are imposed on:
 - the hull;
 - the free surface.

➢Mathematical model

✓ Viscous flow

- Incompressible fluid;
- Based on RANS equations;
- ✓Turbulence model
- ✓Boundary conditions

 \checkmark imposed on all the faces of the computational domain.

- ▶ pressure
- ▷velocity
- >turbulent kinetic energy
- ➤turbulent frequency

➢Mathematical model

- ✓ Propeller Model
 - lifting line theory;
 - body force approach.

>CFD Results

the 1/58 model scale ship studied by MOERI at SIMMAN 2008

Dimension	Value
L_{pp} [m]	5.5172
<i>B</i> [m]	1.000
<i>d</i> [m]	0.3586
C_B	0.81

Dimension	Value		
propell	er		
<i>D</i> [m]	0.17		
$P/D_{0.7R}$ [m]	0.721		
A_{E}/A_{0} [m]	0.431		
rudder			
$S_R [m^2]$	0.0812		
Lateral area [m ²]	0.0406		

Ship resistance modelling conditions:

- Based on the experimental data provided by MOERI;
- A range of eight speeds between 0.743 to 1.0807 [m/s];
- 1.047 [m/s] model speed corresponds to the 15.5 [Kn] full scale speed;
- all calculations are done for the bare hull model with zero trim angle.

Ship resistance results

Model Speed [m/s]	$R_{T_{MOERI}}[N]$	R_{T_CFD} [N]	Error %
0.743	9.58	10.25	7.00%
0.8105	11.27	12.05	6.91%
0.8781	13.10	13.99	6.81%
0.9456	15.04	16.10	7.06%
0.9794	16.07	17.19	6.98%
1.0132	17.13	18.34	7.06%
1.0469	18.22	19.50	7.05%
1,0807	19,36	20,73	7,08%

$$C_T = C_W + C_V = C_W + C_{PV} + C_F$$

$$R_T = C_T \cdot \frac{1}{2} \cdot \rho \cdot U^2 \cdot S$$

25

Ship Resistance results

Fn

0.101

0.110

0.119

0.129

0.138

0.142

0.147

5.15 x10⁻⁵

7,27 x10⁻⁶

Static PMM Tests

- ✓ General overview
- ✓ Obtain :
 - ✓ The longitudinal force, *X*,✓ The transversal force, *Y*,
 - ✓ The yaw moment, N,

Static PMM Tests

✓ Modelling Conditions

✓ Static Drift

> The "static drift" numerical tests were done, for a range of drift angles extended between beta = -20° to beta = 20° with 2° increment.

> During all computational tests, the rudder angle was maintained $=0^{\circ}$.

Static drift tests

Static PMM Tests

✓ Modelling Conditions

✓ Static Rudder

The "static rudder" numerical tests were done, for a range of rudder angles extended from delta = -40° to delta =40° with 10° increment.
 During all computational tests, zero drift angle was maintained, beta =0°.

Static Rudder Results

			_
δ [°]	Y _{R_MOERI}	Y_{R_CFD}	Error %
-40	-16.296	-16.903	-3.722
-30	-14.748	-16.195	-9.812
-20	-11.404	-11.359	0.390
-10	-6.743	-7.934	-17.654
0	-	-	-
10	4.606	7.265	-57.734
20	10.334	15.491	-49.898
30	15.458	16.674	-7.866
40	19.499	16.959	13.027

Static PMM Tests

✓ Results

✓ Static Drift and Rudder

 \checkmark analyze the non-dimensional forces and moment obtained by the use of the following formulas:

$$\frac{Force}{0.5\rho U^2 L_{wL}^2} \qquad \frac{Moment}{0.5\rho U^2 L_{wL}^3}$$

Static PMM Tests

✓ Results

✓Non dimensional forces and moment

Simulation of the turning circle and Zig-Zag maneuver

➢Introduction

>The static hydrodynamics derivatives obtained

>Turning circle and Zig-Zag maneuver trajectories will be simulated.

Static hydrodynamic derivatives

➤Used computer code POLYNEW developed at "Dunarea de Jos" University of Galati.

>Input data the non-dimensional hydrodynamic forces and moments obtained from CFD "static drift and rudder" results,

➤ static hydrodynamic derivatives

➢Results

>Non dimensional derivatives

$Qvdot=mx_{g}-N_{\psi}$	Clarke	Qrdd=1/2 N _{r66}	0
$Qrdot = I_{\pi} - N_{i}$	Clarke	$Qd = N_{\delta}$	Clarke
$Q_{v} = N_{v}$	Clarke	Qddd=1/6 N ₈₈₀	CFD-static tests
Qvvv=1/6 N _{vvv}	CFD-static tests	$Qdvv=1/2N_{\delta w}$	CFD-static tests
Qvn=1/2 <i>N</i> _{vrr}	0	Qdn= $1/2N_{\delta rr}$	0
$Qvdd=\frac{1}{2}N_{vdv}$	CFD-static tests	$\operatorname{Qdu}=N_{\delta u}$	0
$Q\mathbf{r} = N_r - mx_{G}U$	Clarke	$Qvrd=N_{vr\delta}$	0
Qm=1/6 N,,,,	0	$Q0 = N_0$	0
Qrvv=1/2 N _{rv}	0	Q0u=N _{0u}	0

+				
	$Xupoint = m - X_{\dot{u}}$	Clarke	$Xvr = X_{vr} + m$	0
	$Xvv=1/2X_w$	CFD-static tests	Xvd=X _{vő}	CFD-static tests
	$Xn=1/2 X_m + mx_\sigma$	0	Xrd=X _{ri}	0
	Xdd= $1/2 X_{\delta\delta}$	CFD-static tests	X0=X ₀	0

$Yvdot=m-Y_{\psi}$	Clarke	Yrdd=1/2 <i>Y</i> ,,,,	0
$Yrdot=mx_G - Y_i$	Clarke	$Yd=Y_{\delta}$	Clarke
$Y_{V}=Y_{v}$	Clarke	Yddd=1/6 Y_{iii}	CFD-static tests
Yvvv=1/6 Y _{vvv}	CFD-static tests	$Ydvv=1/2Y_{\delta w}$	CFD-static tests
Yvn=1/2 <i>Y</i> _{see}	0	$Ydm=1/2Y_{\delta m}$	0
$Yvdd=1/2Y_{v\delta\delta}$	CFD-static tests	$Ydu=Y_{\delta u}$	0
$Yr=Y_r-mU$	Clarke	Yvrd=Y _{vn}	0
Ym=1/6 Y,,,,	0	$Y0=Y_0$	0
$Yrvv=1/2Y_{rvv}$	0	$Y0u=Y_{0u}$	0

Turning circle results

Stability on route

➤Using CFD Techniques;

>static derivatives were performed;

Stability parameter C was obtained and presented

C -2,092E-05

>C < 0 \rightarrow Ship not stable on route

Turning circle simulation

✓ Using the PMMPROG simulation code, the turning circle parameters with rudder deflection angle 35 $^{\circ}$ have been obtained.

TURNING CIRCLE PARAMETERS

35.0
1019.5
616.1
. 1035.2
. 1558.8
c] 198.0
x] 438.0
-1575.7
800.9
11.9
8.80

18	_						616,1 r	n nsfer	-	_
16	_		/							-
14 14	_		¢				Advan 1019.5	5 m		-
12	_	(-
tion 01	-									-
X posi 8					Steady	turnina			_	
6			$\overline{\ }$		radius :	800.9 m	/			
12	_									_
		16	14	12	10 8	6	4	2		
					Y posi	tion				

STD / L	4 ,921	STD	1601,8 [m]
TD/L	4,789	TD	1558,8 [m]
AD / L	3,132	AD	1019,5 [m]
TR / L	1,893	TR	616,1 [m]
Vt / Va	0,568	Vt	8,8 [kn]

STD	Steady turning diameter
TD	Tactical diameter
AD	Advance
TR	Transfer
Vt / Va	Speed losses ration

38

STD Min= 2.1 STD Max= 4.9 STD UGAL= 4.9

Zig-Zag simulations

First overshoot angle (Zig-Zag 20°/20°)	18,2
Second overshoot angle (Zig-Zag 20°/20°)	13,2
Initial turning time, ta	70'
Advance (reach) Ts	295'
Period	620'

Turning circle and Zig-Zag simulations

≻In order to check the ship manoeuvring performances, the IMO standard manoeuvres criteria presented in Table were applied.

Standard manoeuvre	Characteristics	Maximum values	Obtained values	Criteria
	Advance (AD)	≤4,5 L	3,1	Passed
Turning circle	Tactical diameter (TD)	\leq 5 L	4,8	Passed
Zig-Zag manoeuvre	First overshoot angle (Zig-Zag 20°/20°)	≤25'	18,2'	Passed

> It is seen that all the criteria are fulfilled.

≻Conclusion

Maneuver characteristics	Initi n	Basic design method (Simulation codes with CFD hydrodynamic derivatives)	
	Linear model	statistic method	Non linear method
Stability on route	1,95E-04	None	-2,09E-05
STD/L	8,059	2,837	4,921
TD/L	None	3,458	4,789
AD/L	None	3,125	3,132
T/L	None	1,653	1,893
First overshoot angle (Zig-Zag 20°/20°)	None	None	18,2'
Second overshoot angle (Zig-Zag 20°/20°)	None	None	13,2'

Conclusion

✓ The CFD is a very important tool at into initial design stage or basic design;

Future works

 \checkmark The static derivatives are not sufficient

✓ necessary to obtain and to use other important dynamic derivatives by means of the CFD Techniques;

 \checkmark Grid study for rudder can be developed.

Thank you very much !!!

