Dynamic transversal instabilities due to coupled pitch-heave-roll motions on a high speed craft

Thesis developed at University of Michigan and University of Rostock

Student: Pablo Gabriel Morato Dominguez Supervisor: Prof. Armin Troesch

Rostock, February 2017

Aim: "Investigate roll behavior of a high speed vessel"

* Video source: Stratos 285 Pro XL 70MPH and Chine Walk Correction

2

- Prediction of hydrodynamic coefficients
 - Carolyn Judge (U.S. Navy)
 - Experimental tests of a boat model

• Development of a reduced order model

Oscar D. Tascon (University of Michigan)

2d+t approximation

3

CFD Model – Preparing geometry

- Benchmark for future CFD analysis
- Boat model geometry

Carolyn Judge model

- ✓ Length overall: 1.50 m
- ✓ Chine beam: 0.45 m
- ✓ Draft: 42.60 mm
- ✓ Deadrise: 20°
- ✓ Trim: 2.9°
- ✓ Speed: 17.52 kn (Fn = 4.3)

(Star-CCM+) Repair surfaces

CFD Model – Meshing technique

EMshi Advanced Design

CFD Model – Verification

* High Performance Computing (Flux): 12 cores – 4GB

	Rigid body motion model	DFBI model
Time step	0.001 seconds	0.0025 seconds
Total number of cells	2.2 million	2.3 million
CPU time per simulation	25 hours	27 hours

Estimation of hydrodynamic coefficients

Prediction of roll hydrodynamic coefficients

- Experiments
- 2d+t Simplification

• 3d CFD analysis

Rigid body motion (RBM) solver

Prescribed roll motion

Measure roll moment

Pablo G. Morato Dominguez

- 3d-CFD close to experimental results
- Inaccurate prediction of inertial terms
- Complex to estimate higher order coefficients

Roll response prediction

 Dynamic Fluid Body Interaction (DFBI) solver

Fluid pressure and shear forces

Governing equations

- Motion of rigid body
- 3 Degrees of freedom: Heave, pitch and roll

* Porpoising and waves excitation

• Dynamic instabilities

Excitation/natural frequency ratio 2:1

Increase roll moment of inertia 40%

- Two-ways coupled between roll and heave/pitch
- Dynamic instability (chine walking)

- Developed by Oscar Tascon (University of Michigan)
- Assumptions

One-way coupled between roll and heave/pitch

Similar treatment for porpoising or wave excitation

• Approach to obtain roll response

Pitch and heave motion (Star-CCM+)

Selection of hydrodynamic coefficients

ODE 45 Algorithm (Matlab)

Roll response – Comparison

- Reduced order model is not robust
 Hydrodynamic coefficients influence roll response
- Similar treatment for porpoising and waves
- One-way coupling between roll and heave/pitch

• CFD analysis provides close results to experiments

• Reduced order model is not robust enough yet

"Ship hydrodynamics of high speed vessels is a very complex issue; however, efforts should be made to predict dynamic instabilities"

(Prof. Armin Troesch)

