

Kodathoor Gangadharan Midhun

7th EMship cycle: September 2016 – February 2018

Master Thesis

Structural Design and Stability of a 6,000 ton Capacity Floating Dock as per DNVGL Rules

Supervisor: Dr. Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin, Poland Internship tutor: Mr. Szymon Chwalisz, Nelton Sp. z o.o., Szczecin, Poland Reviewer: Dr. Thomas Lindemann, University of Rostock, Rostock, Germany

La Spezia, February 2018

Internship Company: Nelton Sp. z o.o., Szczecin

- Founded in 1999
- Headquarters in Gdansk
- Subdivision in Szczecin
- More than 70 qualified engineers
- Expertise and vast experience in
 - Marine and Offshore Design
 - Mechanical Engineering
 - Special Tasks
- Design Softwares

MODERN ENGINEERING COMPANY

2 of 29

Contents:

- 1. General Overview on Floating Docks
- 2. Objectives
- 3. Main Particulars
- 4. Geometry
- 5. Scantlings Design
- 6. Weights and CoG Estimation
- 7. Strength Analysis (FEA)
- 8. Connection Concepts
- 9. Intact Stability Check
- 10. Feasibility Study for Submarines Construction
- 11. Conclusions

1. General Overview on Floating Docks

Purpose: Construction, repair, surveys, launching

Major Types: Unit dock (a), composite dock (b), sectional dock (c)

(b)

(a)

Materials of construction: Concrete, steel, wood

Advantages: Saves yard space, mobility, self-docking (composite dock)

Disadvantages: Movement of materials and people

Construction standards: Various Class Rules (ABS, DNVGL, BV, etc.)

Ref: Analysis and Design of Floating Drydocks by Arsham Amirikian

Structural design and Stability of a 6,000 ton Capacity Floating Dock as per DNVGL Rules

1. General Overview on Floating Docks (contd...)

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

Master Thesis, La Spezia, February 2018

2. Objectives

3. Main Particulars

Design	Floating Dock
Туре	Sectional Pontoon Type
Material	Steel
Capacity	6,000 tons
Length overall	92.4 m
Breadth overall	30 m
Breadth inside	23 m
Depth overall	15 m
Depth of pontoon	4.5 m
Minimum Draught	1.69 m
Maximum Loaded Draught	13.5 m
Height of Docking Block	1.2 m (from Pontoon Deck)
Class	DNV-GL

Ref: Drawings and Preliminary Stability Check document provided by Nelton

4. Geometry

4. Geometry (contd...)

5. Scantlings Design

Based on DNVGL-RU-FD Edition 2015

Yield strength of steel considered: 235MPa or 355MPa

Design based on local pressures: Hydrostatic pressure due to maximum draft (13.5m) and tank fluid pressures

Built up T-sections/ standard I-sections used for longitudinal and transverse frames/ pillars

Standard bulb sections and angle sections for stiffeners

Framing System: Longitudinal for individual Pontoons (transverse in dock assembly) and Dock Wings

5. Scantlings Design (contd...)

5. Scantlings Design (contd...)

5. Scantlings Design (contd...)

Items list from the section drawings

Item no.	Item description	Scantlings in mm			
	Pontoon				
1	Bottom plate	12 thick			
2	Side Plate	12 thick			
3	Deck plate	12 thick			
4	Longitudinal bulkhead	10 thick			
5	Bottom Girder	T section: W380x12 F250x20			
6	Bottom Frame	T section: W240x12 F100x16			
7	Bottom stiffeners	BP 160x11.5			
8	Side frame	T section: W360x12 F250x16			
9	Side stiffeners	BP 180x10			
10	Side stiffeners	BP 160x9			
11	Deck girder	T section: W350x12 F250x20			
12	Deck frame	T section: W220x12 F100x16			
13	Deck stiffeners	BP 140x10			
14	Bulkhead stiffeners	BP 120x8			
15	Pillars	UC 250x250x71.8 kg/m			
16	Pillar brackets	UC 250x250x71.8 kg/m			

Item no.	Item description	Scantlings in mm			
	Dockwing				
17	Side plate (below safety deck)	10 thick			
18	Side plate (above safety deck)	8 thick			
19	Upper deck plate	8 thick			
20	Safety deck plate	8 thick			
21	Transverse bulkhead (below safety deck)	8 thick			
22	Transverse bulkhead (above safety deck)	6 thick			
23	Bottom frame	UB 300x200x55.8 kg/m			
24	Side frame (below safety deck)	T section: W500x10 F100x16			
25	Side frame (above safety deck)	T section: W150x8 F100x12			
26	Side stiffeners (below safety deck)	BP 140x8			
27	Side stiffeners (above safety deck)	LP 75x50x8			
28	Upper deck frame	T section: W250x8 F100x10			
29	Upper deck stiffeners	BP 120x6			
30	Safety deck frame	T section: W300x8 F150x10			
31	Safety deck stiffeners	BP 120x6			
32	Bulkhead stiffeners (below safety deck)	BP 200x8.5			
33	Bulkhead stiffeners (above safety deck)	LP 100x65x8			
34	Upper bracket	UB 150x100x20.7 kg/m			

6. Weights and CoG Estimation

Summary of weights and CoG of the empty structure

		Contingency	T . 1W . 1.	CoG			Moments		
S1 No	Item Description		l otal Weight	х	Y	Ζ	M-x	М-у	M-z
			(tons)	(m)	(m)	(m)	(t.m)	(t.m)	(t.m)
1	Structural Steel	10%	2207	46.34	15.00	4.36	102258	33100	9620
2	Architectural and misc	20%	165	45.68	15.40	10.13	7524	2536	1668
3	Outfitting and equipment	20%	323	48.45	14.33	7.86	15667	4634	2541

Structural Steel Architectural and misc Outfitting and equipment

2695	46.55	14.94	5.13	125449	40271	13829	
	CoG			Moments			
Total Weight	х	Y	Z	M-x	М-у	M-z	
(tons)	(m)	(m)	(m)	(t.m)	(t.m)	(t.m)	

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

Master Thesis, La Spezia, February 2018

7. Strength Analysis

7. Strength Analysis (contd...)

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

Master Thesis, La Spezia, February 2018

7. Strength Analysis (contd...)

Working Draft Condition:

Sagging Ship (Max. Von Mises Stress Plot) Hogging Ship

Fully Submerged Condition:

Max. Von Mises Stress Plot

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

17 of 29

Master Thesis, La Spezia, February 2018

7. Strength Analysis (contd...)

Docking or Undocking Condition (water level just below docking blocks):

Sagging Ship (Max. Von Mises Stress Plot) Hogging Ship

Results Summary:

Max. Von Mises Stress = 271MPa on Pontoon Deck Girder at Sagging Ship Working Condition

Maximum Vertical Deflection = 73mm at Sagging Ship Transient Draft Condition High Stressed Normal Yield Strength Members = Pontoon Central Bulkhead, Pontoon Bottom, Side and Deck Plates at the connecting edges close to centreline (central and end pontoons)

8. Connection Concepts

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

Master Thesis, La Spezia, February 2018

8. Connection Concepts (contd...)

Bolt Loads- FEA Results:

Max. Tensile Load = 131kN; Resultant Shear Load = 71kN

Bolt Selected- M24 ISO Grade 8.8 Bolt:

Allowable Tensile Strength = 146kN; Allowable Shear Strength = 105kN

Connecting Plates:

Min. Thickness = 12mm, Min. Yield Strength = 355MPa

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

9. Intact Stability Check

Empty structure weight ≈ 2700 tons; LCG and TCG \approx at the centre of the dock; VCG $\approx 6m$; Wind pressure ≈ 526 Pa (30m/s velocity)

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

9. Intact Stability Check (contd...)

Stability Check:

- 1. Initial GMt after free surface correction (>1m)
- Wind Criteria (Angle of steady heel ≤ 16 deg; Angle of steady heel/ Deck edge immersion angle ≤ 80%)
- 3. Lifting Criteria (Angle of steady heel < 10 deg; A1/A2 > 40%)
- 4. Freeboard (>0.3 m for pontoon deck; >1 m for upper deck)

9. Intact Stability Check (contd...)

Stability Cases:

1. Lightship Condition:

```
Draft amidships = 1.59 m; Displacement = 4039 tons
```

2. Fully Submerged Condition:

```
Draft amidships = 12.1 \text{ m}; Displacement = 16518 \text{ tons}
```

3. Docking Condition (water level just below docking blocks):

Draft amidships = 5.7 m; Displacement = 12751 tons

4. Working Condition:

Draft amidships = 3.7 m; Displacement = 10039 tons

5. Undocking Condition (water level just below docking blocks):

Draft amidships = 5.7 m; Displacement = 12744 tons

Results:

All stability requirements satisfied except that the maximum submersion of 13.5 m not achieved (less by approx. 1.4 m)

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

9. Intact Stability Check (contd...)

Limiting Vessel VCG-Displacement Curve

10. Feasibility Study for Submarines Construction

Polish Navy- Orca Submarine Program- Procurement of Submarines

Buildon	Submarine	L	В	т	Δ	
Builder	Class	(m)	(m)	(m)	(ton)	
Saab	A26	63	6.4	6	1930	
DCNS	Scorpene	75	6.2	5.8	2000	
ткмѕ	Type 212A	57.2	6.8	6.4	1830	

Submarine Data for Study

Ref: www.navyrecognition.com; https://en.wikipedia.org/wiki/A26_submarine; https://en.wikipedia.org/wiki/Scorp%C3%A8ne-class_submarine; https://en.wikipedia.org/wiki/Type_212_submarine

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

10. Feasibility Study for Submarines Construction (contd...)

Side-by-Side Docking (End View)

Lifting Capacity Checks:

- 1. Strength_ok
- 2. Clear Space requirements_ ok except for draft in case of Type 212A
- 3. Stability_ok

11. Conclusions

- 1. High yield steel of strength 355MPa is considered for pontoon frames and girders so as to reduce the size of the sections used (section modulus requirement is approximately 39% lesser compared to low yield steel).
- 2. Pillars of high yield steel are used as they undergo higher stresses from axial loads and a buckling check is also carried out and found satisfactory.
- 3. Based on the FEA results, low yield plates of 235MPa considered in the scantlings design are replaced with high yield plates of strength 355MPa at specific locations like the plates of pontoon deck, side and bottom between the first frame to the port and to the starboard which are high stressed regions, then the pontoon central bulkhead and the dock wing upper deck plate.
- 4. From FEA we obtain the maximum deflection associated with the maximum stresses.

11. Conclusions

- 5. The considered case of loading is a conservative case where the docking load is distributed along the centreline as required by the Class. Actual case of docking may be supported from the sides too and hence less concentration of loads along the centreline.
- 6. More accurate weights calculation has to be carried out with concept designs for electrical, HVAC, outfitting and piping.
- 7. Ballast capacity needs to be increased to achieve maximum submersion (approx. 800 m³ as per the calculated weight). An increase of pontoon height by 0.2m and moving safety deck up by 1m could give sufficient ballast space.
- 8. The dock design was checked for its feasibility in constructing submarines for the Polish Navy's Orca Submarine Program and found to be feasible except for the draft clearance for Type 212A class submarine being less by a small margin (0.3m). This correction of draft or submersion of the dock is intended in the considered design. So it can be assumed that the subject dock is able to perform the construction and launching of the submarines needed to be constructed.

Kodathoor Midhun, 7th EMship cycle: 2016 – 2018

Thank you for your attention!

http://www.wildoceanfilm.com/marketing/images/photos/marinelife/Big%20Ship.jpg