AUTOMATED MANUFACTURE OF A SHAPE-ADAPTIVE LARGE HYDROFOIL

Marco S. Sotelo Internship supervisor: Prof. Gangadhara Prusty Uni Rostock supervisor: Dr-Ing Robert Bronsart

Introduction

- Shape adaptive
- Change on twist
- Wider efficiency range
- Noise reduction
- Less cavitation

Design and Optimization

- Solid Element model (SOLID186)
- Max deflection of 41 mm
- Error of 2.4% with reference

Introduction to AFP technique

- Automated Fibre Placement (AFP)
- Advanced manufacturing technique
- Fully automated
- High quality laminations
- Increase productivity
- Can use thermoset or thermoplastic

Generation of the G-Code

- Based on FEM model
- Non uniform thickness
- Boundary definition
- Orientation on each boundary
- Total of 36 boundaries
- Last 20 plies, complete wrapping

Manufacturing of the Large Hydrofoil

Manufacturing of the Large Hydrofoil

Sensor and monitoring

- Distributed fibre sensor
- Embedded on the laminate (Ply 92)
- Manually placed
- Fixed with epoxy bonding agent
- Total of 5.7 m of measurement length

Distributed Fibre sensor

-8.0

Conclusions

- Advanced manufacturing techniques improves quality on laminations
- AFP techniques are potential improvements on the construction of high performance components like propellers and hydrofoils
- Distributed fibre sensors are suitable measurement techniques to monitor laminates without disturbing their performance